Floating Wind Solutions

Review of LiDAR-assisted control for floating wind turbine applications

Marcus K. Marinos, Offshore Wind Development Lead

Agenda

- Introduction
- Key findings from fixed turbine studies
- Fixed vs. floating turbine dynamics
- Floating wind applications & findings
- Summary & Conclusions

Floating Wind Solutions

160+ year history

60+ countries

Involved in >70% of all operational European offshore wind projects

ENR #1 International Design Firm

AA leader rating from MSCI for environmental, social and corporate governance

wood. Offshore Wind in Brief

Our Strategic Objective

Being a **premium**, **differentiated** business delivering **exceptional** returns for our clients, our team, our investors, and the communities in which we work.

What we do

World leading consulting and engineering company across energy and the built environment, with 200+ experts engaged in offshore wind

Our Purpose

Unlocking **solutions** to the world's most critical **challenges in offshore wind.**

Our Vision

Inspire with ingenuity, **partner** with agility, **create** new possibilities. Our Values

Care. Commitment. Courage.

Floating Wind Solutions

Introduction

Traditional Wind Turbine Operation & Control

- Modern wind turbines are large & flexible structures, which creates a major challenge for offshore wind turbines.
- There are three separate control loops in wind turbine systems: pitch, torque, and yaw.
- Trade-off between the maximum energy captured and the load induced on the system.

Floating Wind Solutions

wood.

Introduction

Traditional Wind Turbine Operation & Control

- Turbines are typically categorised into 3 operating regions.
- In Torque (Region 2) and Pitch (Region 3) control, Proportional-Integral (PI) controllers are used.
- Generator speed used as the feedback input.
- Yaw control aligns the turbine nacelle with the wind direction.

Source: J. Jonkman, S. Butterfield, W. Musial, G. Scott. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab.(NREL), Golden, CO (United States); 2009.

Floating Wind Solutions

Introduction

Light Detection And Ranging (LiDAR)

- Operates by firing high speed laser pulses, which are reflected by particulates in the air.
- Nacelle-mounted, forward-looking LiDAR can be used to measure the incoming wind to assist with wind turbine control.
- Two LiDAR configurations Continuous wave and Pulsed.
- Demonstrated ability to detect wind shear, veer and track gusts during a measurement campaign at the Alpha Ventus wind farm.

Source: F. Dunne, D. Schlipf, L. Pao, A. Wright, B. Jonkman, N. Kelley, and E. Simley. Comparison of two independent LIDAR-based pitch control designs. In50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, page 1151, 2012.

Floating Wind Solutions

Introduction

wood.

Key findings from fixed turbine studies

Pitch Control with LiDAR^[1, 2, 3]

- Disturbance Accommodating Controller (DAC) + LiDAR vs. DAC:
 - Damage equivalent flap loads reduced by ~10% under turbulent wind conditions.
- Feedforward-Feedback vs. Feedback:
 - Standard deviation of the rotor speed reduced by 70-80%.
 - Reduced fatigue and extreme loads on the tower, drive train and blades, without increasing the pitch rate.
 - Positive impacts on rotor speed regulation as well as on tower, blade & shaft loads.

Floating Wind Solutions

WOO

Key findings from fixed turbine studies

Yaw Control with LiDAR ^[6, 7]

- Field testing 0.6MW WTG with vs. without error correction applied:
 - Practical wind vane error correction determination showed significant increase in power capture.
 - Positive & negative impacts upon loadings.
- LiDAR vs. wind vane yaw controller:
 - Typical wind vane yaw controller = yaw misalignment (almost always require static yaw correction)
 - LiDAR controller yaw misalignment much closer to zero, with superior alignment verified via power performance analysis.

Key findings from fixed turbine studies

Benefits of WTG Control with LiDAR

- Reductions in the fatigue and extreme loads on the tower, drive train and blades, without increasing the pitch rate.
- Positive impacts upon rotor speed regulation.
- Significant increase in power capture.
- LiDAR controller yaw misalignment much closer to zero, with superior alignment verified through a power performance analysis.

WOO

Fixed vs. Floating turbine dynamics

Increased loads on offshore turbine components vs. onshore turbines^[8] Coupling between platform motion & pitch control results in negative damping^{[9][10][11]}

Cost implications

Floating Wind Solutions

Floating wind applications & findings

Feedforward Feedback Pitch Control of TLP-supported 5MW WTG^[12]

- Wind speed step change: Reduction in extreme generator speed variation by 45% and the extreme tower displacement by 40% vs. feedback-only control.
- Turbulent wind field, 5m significant wave height: Standard deviation of the generator speed reduced by 44%. Standard deviation of the loads reduced by 24% vs. feedbackonly control.

Floating Wind Solutions

Floating wind applications & findings

Feedforward Feedback Pitch Control of Spar-supported 5MW WTG^[12]

Perfect wind preview (vs. baseline):

- Rotor speed overshoot reduced by 98.9%.
- Maximum platform pitch angle deviation reduced by 93.7%.
- Maximum tower base fore-aft bending moment reduced by 37.8%.

Floating wind applications & findings

Feedforward Feedback Pitch Control of Sparsupported 5MW WTG^[13]

Realistic wind preview (vs. baseline):

- LiDAR able to capture the rotor effective wind speed.
- Reductions in rotor speed variation, platform motions and tower base bending moment.
- Loading reductions: Tower base loads by 20%, shaft loads by 7%, and blade root by 9%.

Floating Wind Solutions

wood.

Summary & Conclusions

- LiDAR-assisted control of floating wind turbines will be a part of our efforts in reducing TOTEX
 - Goal is to, by 2040, reduce CAPEX by 65% and OPEX by 36%
- Proactive vs. reactive control = where the industry is going
- CAPEX impacts include more efficient floater designs.
- OPEX impacts include less maintenance leading to reduced OPEX, as well as less exposure to risks for service personnel.

Summary & Conclusions

FWS

The Marriott Marquis, Houston 1-3 March 2022

Floating Wind Solutions

Thank you!

References & Acknowledgements

Andrew Russell, Maurizio Collu, Alasdair McDonald, Philipp Thies, Alan Mortimer and Alexander Quayle

- 1. M. Harris, M. Hand, and A. Wright. LiDAR for turbine control. National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-39154, 2006.
- 2. D. Schlipf and M. Kühn. Prospects of a collective pitch control by means of predictive disturbance compensation assisted by wind speed measurements. University of Stuttgart, 2008.
- 3. D. Schlipf, P. Fleming, F. Haizmann, A. Scholbrock, M. Hofs, A. Wright, and P.W. Cheng. *Field testing of feedforward collective pitch control on the cart2 using a nacelle-based LIDAR scanner*. In Journal of Physics: Conference Series, volume 555, page 012090. IOP Publishing, 2014.
- 4. N. Wang, K. Johnson, and A. Wright. *Comparison of strategies for enhancing energy capture and reducing loads using LIDAR and feedforward control*. IEEE Transactions on Control Systems Technology, 21(4):1129–1142, 2013.
- 5. N. Wang. *LIDAR-assisted feedforward and feedback control design for wind turbine tower load mitigation and power capture enhancement*. Colorado School of Mines, 2013.
- 6. P. Fleming, A. Scholbrock, A. Jehu, S Davoust, E Osler, A. Wright, and A. Clifton. *Field-test results using a nacelle-mounted LIDAR for improving wind turbine power capture by reducing yaw misalignment*. In Journal of Physics: Conference Series, volume 524, page 012002. IOP Publishing, 2014
- 7. A. Scholbrock, P. Fleming, A. Wright, C. Slinger, J. Medley, and M. Harris. *Field test results from LIDAR measured yaw control for improved power capture with the NREL controls advanced research turbine*. In 33rd Wind Energy Symposium, page 1209, 2015.
- 8. J. Jonkman and D. Matha. Dynamics of offshore floating wind turbines analysis of three concepts. Wind Energy, 14(4):557–569, 2011
- 9. T.J. Larsen and T.D. Hanson. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. In Journal of Physics: Conference Series, volume 75, page 012073. IOP Publishing, 2007
- 10. W. Yu, F. Lemmer, D. Schlipf, P.W. Cheng, B. Visser, H. Links, N. Gupta, S. Dankemann, B. Counago, and J. Serna. *Evaluation of control methods for floating offshore wind turbines*. In Journal of Physics: Conference Series, volume 1104, page 012033. IOP Publishing, 2018.
- 11. P. Fleming, I. Pineda, M. Rossetti, A. Wright, and D. Arora. *Evaluating methods for control of an offshore floating turbine*. In International Conference on Offshore Mechanics and Arctic Engineering, volume 45547, page V09BT09A019. American Society of Mechanical Engineers, 2014.
- 12. S.T. Navalkar, Jan-Willem van Wingerden, P. Fleming, and G. van Kuik. *Integrating robust LIDAR based feedforward with feedback control to enhance speed regulation of floating wind turbines*. In 2015 American Control Conference (ACC), pages 3070–3075. IEEE, 2015.
- 13. D. Schlipf, E. Simley, F. Lemmer, L. Pao, and P.W. Cheng. *Collective pitch feedforward control of floating wind turbines using LiDAR*. In The Twenty-fifth International Ocean and Polar Engineering Conference. OnePetro, 2015.

Floating Wind Solutions

