

Offshore Green Hydrogen & Wind Farms

Offgrid / Ongrid scenarios review

March 2022

Case Study

Going offshore to produce Hydrogen

Offshore Green Hydrogen – a good solution?

Delocalize potential risks

Leverage
Wind Power
Production

Greater superficies

Direct Access to Water More Societal Acceptance

PROS

Case Specific Economics

New Technologies

Case Study – Offshore floating wind farm 1GW

Water depth: 90 m

Distance from shore: 60 km

102 floating wind turbines

1 HVDC sub-station

Design life: 20 years

Production cost: 88€/MWh

Offshore development – Scenarios overview

日ectricity & hydrogen production

Pure hydrogen production

Offshore H2 production

Onshore H2 production

Offshore H2 production

Onshore H2 production

Centralized production

Distributed production

Centralized production

Centralized production

Distributed production

Centralized production

OnGrid Scenarios – Hybrid electrical and H2 production

H2 offshore production distributed

H2 onshore production [benchmark]

Maximum capacity factor of Electrolyser considered in this scenario

On-Grid Scenarios – Costs comparison

Increase of CAPEX/OPEX compensated by less inline electricity losses

May be of interest to go offshore to overcome onshore regulation constraints

OffGrid Scenarios – Pure H2 production

H2 offshore production Distributed

H2 offshore production Centralized

H2 onshore production [benchmark]

OffGrid Scenarios - Cost comparison

H2 production cost is decreased in offshore scenario when distance from 'shore increases

Conclusion

- Decentralized Hydrogen production seems to be a good concept when mutualized with floating power production
- 2 Exporting Hydrogen instead of electricity is cheaper for long distances with less losses plus e-storage benefits
- 3. Decentralized Hydrogen production is a good enabler to exploit remote fields where electricity export is too expensive and/or limited connections to the electrical grid & temporary e-storage needs

NereHydTM

Combined Power and H2 Production

Lhyfe & DORIS Partnership - A common objective

Strengths

Expertise in hydrogen value chain
Expertise in hydrogen production
Network of H2 end users
Network of investors

Strengths

55 years of offshore experience
North Sea O&M experience
Offshore wind expertise
Network of partners

NereHyd™ – Roadmap

DORIS: offshore expertise + DNA of innovation

Lhyfe: Partner pioneer in green H2 production

Power production by NereWind™

Hydrogen plant fully integrated:
PEM Electrolyser technology
Water treatment onboard
Gaz treatment
Specific Electrical Equipment

NereWind™ floater

With 20 years of expertise in offshore wind, DORIS brings a competitive, versatile and efficient semi-submersible design, named NereWindTM.

Designed with:

- Multi-columns
- Double Trusses
- Attenuation Chambers
- Steel, Concrete or Hybrid Alternatives
- For Largest Turbines (10 and 15 MW)

NereHyd™ – Main bricks & features

NereWind™

Smart integration

Unmanned Asset
&
Optimized
Control

Ongrid & Offgrid Architectures

Ris

NereHyd™ overview

THANKYOU

