Economics of Floating Wind for Green Hydrogen

David Steven Jacoby, Senior Fellow
Boston University Institute for Sustainable Energy
Massive Long-Term Anticipation for Green H₂

• Massive per-kg cost decreases by 2030
• Green H₂ will scale to nearly half of all production between 2030 and 2050

Source: Boston Strategies International analysis. Some base data from Rystad, IRENA, USDOE, BNEF, et al.
Viability of Floating Wind for Green H₂

- Massive LCOE cost decreases by 2050
- Financial viability depends on ability to scale and subsidies

Power Outlook for Green H₂ Production

Floating Offshore Wind - Comparative Costs

Tapping the Market Potential

Illustrative Potential

Fixed and Floating Wind Potential for Green H₂

<table>
<thead>
<tr>
<th>Year</th>
<th>Fixed MW</th>
<th>Floating MW</th>
<th>Fixed Farms</th>
<th>Floating Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Economic Levers

- Refinement of CapEx and OpEx projections vs. solar, hydro, nuclear, etc. and by design type, including cost and end-to-end CO₂ footprint
- Standardization
- Local value added
- Availability of specialized vessels (installation, maintenance)
- Availability of materials (e.g., rare earths)
- Lifecycle cost (including decommissioning)

Source: Analysis by David Steven Jacoby

Relative to fixed offshore

Source: Boston Strategies International modeling of energy sources for green hydrogen production by wind vs. other sources, offshore vs. onshore, floating vs. fixed, etc. Relies on base data from DNV, Rystad, IRENA, USDCE, BNEF, NREL, CNBC, et al.
The Role of Analytics in Lowering LCOE

REVchain™ Process

1. Process Governance
 Aligning Stakeholders Around Project Planning and Execution

2. Baselines & Targets
 Defining Value Chain Boundary and Carbon Footprint
 - Lifecycle cost (incl. decommissioning)
 - End-to-end CO2 footprint

3. Technology Evaluation
 Deciding on Technologies and Applications
 - Refinement of CapEx and OpEx projections vs. solar, hydro, nuclear, etc. and by design type

4. Commercial & Channel Choices
 Targeting Channels & Business Models to Maximize Competitive Advantage
 - Standardization

5. Partnering
 Onboarding Supply Chain Partners
 - Local value added
 - Availability of specialized vessels (installation, maintenance)
 - Availability of materials (e.g., rare earths)

6. Implementation
 Production at Scale

Floating Wind Project Economic Levers

Source: David Steven Jacoby's analysis using REVchain™ framework

Boston University Institute for Sustainable Energy
DRAFT

This report has been prepared by Boston Strategies International with respect to anticipated future performance and projections are no guarantee of future performance and involve significant business, economic and competitive risks, contingencies and uncertainties, which are difficult to predict. Accordingly, actual results may vary up or down. This report may not be reproduced or distributed without express written approval from Boston Strategies International.

This report contains forward-looking statements and analysis of market trends and external data. Forward-looking, these projections and forward-looking statements may not be

David Steven Jacoby
Senior Fellow
Boston University Institute for Sustainable Energy
djacoby@bu.edu
+1 617 593 2620